O MÉTODO DE VARIAÇÃO DAS CONSTANTES

HÉLIO BERNARDO LOPES¹

O tema das equações diferenciais está presente na esmagadora maioria dos planos de estudos dos cursos de licenciatura onde se estudam temas matemáticos. E o mesmo acontece no âmbito de muitos cursos de mestrado e até de doutoramento.

De resto, o tema continua em franco desenvolvimento, muito em particular no subdomínio das equações diferenciais às derivadas parciais, e mormente ao nível das aplicações a casos concretos.

Um caso muito particular de equações diferenciais é o das equações diferenciais ordinárias, lineares, que são suscetíveis de se reduzir à forma:

$$a_0(x)y^{(m)} + a_1(x)y^{(m-1)} + \dots + a_{m-1}(x)y^{"} + a_{m-1}(x)y' + a_m(x)y = f(x)$$

onde $a_j(x)$, j=0,...,m, são funções reais de variável real, tal como f(x), e onde y é a (função) incógnita da equação, dependente de $x \in D \subseteq \mathbf{R}$ e com valores em \mathbf{R} , sendo $y^{(j)}$, j=1,...,m, as suas derivadas até à ordem m.

Uma tal equação diz-se de coeficientes variáveis (com $x \in D \subseteq \mathbf{R}$), que são os $a_j(x)$, e completa, se f(x) não for aí identicamente nula.

Se os coeficientes $a_j(x)$ forem constantes reais, a equação anterior diz-se de coeficientes constantes, escrevendo-se preferencialmente na forma na forma:

$$a_0 y^{(m)} + a_1 y^{(m-1)} + \dots + a_{m-2} y^{"} + a_{m-1} y^{'} + a_m y = f(x)$$

dizendo-se homogénea se f(x) for identicamente nula, $f(x) \equiv 0$:

$$a_0 y^{(m)} + a_1 y^{(m-1)} + \dots + a_{m-2} y^{"} + a_{m-1} y^{'} + a_m y = 0.$$

A solução geral da equação homogénea é facilmente obtenível por métodos elementares, comportando, naturalmente, m constantes reais arbitrárias.

No caso mais simples, a solução geral da equação homogénea será do tipo:

$$y_h = C_1 y_1 + \dots + C_m y_m$$

com $C_j \in \mathbf{R}, j=1,...,m$, constantes arbitrárias, e y_j , j=1,...,m, funções reais de variável real.

Para se conseguir a solução geral da equação completa, há que encontrar uma sua solução particular, y_n , sendo a solução geral da mesma dada por:

¹ Antigo Professor e Membro do Conselho Científico da Escola Superior de Polícia.

$$y = y_h + y_p = C_1 y_1 + \dots + C_m y_m + y_p.$$

Em certas situações da função f(x) o recurso ao método dos coeficientes indeterminados permite encontrar uma solução particular da equação completa. É o que se passa com a equação de segunda ordem:

$$y'' - 5y' + 6y = x^2$$

onde uma solução particular poderá ser do tipo:

$$y_n = A_0 x^2 + A_1 x + A_2$$

encontrando-se os coeficientes A_0 , A_1 , $A_2 \in \mathbf{R}$ através do método dos coeficientes indeterminados.

De um modo assaz frequente, esta metodologia não oferece qualquer dificuldade na sua aplicação, em ordem a encontrar a solução geral de uma equação completa de coeficientes constantes.

O mesmo não se dá se a função f(x) não pertencer a um conjunto de funções típicas, que são as que surgem, de um modo muito geral, nas aplicações ao nível escolar.

Seja, por exemplo, a nova equação:

$$y''' + y' = \cos ec(x)$$

que é completa e de terceira ordem, mas em que uma sua solução particular não pode obter-se através do método dos coeficientes indeterminados.

A solução geral da correspondente equação homogénea obtém-se facilmente e é:

$$y_h = C_1 + C_2 \cos(x) + C_3 sen(x)$$

onde C_1 , C_2 e C_3 são constantes reais arbitrárias. Ora, a obtenção de uma solução particular da equação completa pode aqui fazer-se por recurso, precisamente, ao método de variação das constantes.

Dado que a solução geral da equação homogénea é:

$$y_h = C_1 + C_2 \cos(x) + C_3 sen(x)$$

o método de variação das constantes consiste em supor que uma solução particular da equação completa é:

$$y_n = C_1(x) + C_2(x)\cos(x) + C_3(x)sen(x)$$

onde as constantes C_j , j=1,2,3, já não são constantes, mas sim funções reais da variável independente, x.

Para se determinarem $C_{j}(x)$, j=1,2,3, e por aí se chegar à solução particular procurada, há que resolver o sistema de equações lineares em $C_{j}(x)$, j=1,2,3, que se mostra de seguida:

$$\begin{cases} C_{1}'(x) + C_{2}'(x)\cos(x) + C_{3}'(x)sen(x) = 0 \\ - C_{2}'(x)sen(x) + C_{3}'(x)\cos(x) = 0 \\ - C_{2}'(x)\cos(x) - C_{3}'(x)sen(x) = cosec(x) \end{cases}$$

obtendo-se, de um modo simples:

$$C_{1}(x) = \cos ec(x) \wedge C_{2}(x) = -\cot g(x) \wedge C_{3}(x) = -1$$

expressões que, primitivadas, fornecem:

$$C_1(x) = -\ln\left[\cos ec(x) + \cot g(x)\right] \wedge C_2(x) = -\ln\left[\sin(x)\right] \wedge C_3(x) = -x.$$

Assim, uma solução particular da equação completa considerada é:

$$y_p = -\ln[\cos ec(x) + \cot g(x)] - \ln[\sin(x)]\cos(x) - x.\sin(x)$$

pelo que a solução geral da equação completa é:

$$y = y_h + y_p = \underbrace{C_1 + C_2 \cos(x) + C_3 sen(x)}_{y_h} - \underbrace{\ln \left[\cos ec(x) + \cot g(x)\right] - \ln \left[sen(x)\right] \cos(x) - x.sen(x)}_{y_p}$$

onde $C_{j} \in \mathbf{R}, \ j=1,2,3$, são constantes arbitrárias.

No caso mais geral de uma equação completa de ordem $\,m\in\,\mathbf{N}_{\,2}$:

$$y^{(m)} + a_1 y^{(m-1)} + \dots + a_{m-2} y'' + a_{m-1} y' + a_m y = f(x)$$

a obtenção de uma sua solução particular, usando o método de variação das constantes, fazse através da resolução do sistema de equações lineares nos $C_j(x)$, j=1,...,m:

$$\begin{cases} C_{1}'(x)y_{1} + \cdots + C_{m}'(x)y_{m} = 0 \\ C_{1}'(x)y_{1}' + \cdots + C_{m}'(x)y_{m}' = 0 \end{cases}$$

$$\begin{cases} C_{1}'(x)y_{1}' + \cdots + C_{m}'(x)y_{m}' = 0 \\ C_{1}'(x)y_{1}^{(m-2)} + \cdots + C_{m}'(x)y_{m}^{(m-2)} = 0 \end{cases}$$

$$\begin{cases} C_{1}'(x)y_{1}^{(m-2)} + \cdots + C_{m}'(x)y_{m}^{(m-2)} = 0 \end{cases}$$

encontrando-se as expressões de $C_j(x)$, por cuja primitivação se obtêm as correspondentes de $C_j(x)$. Substituindo estas expressões na solução geral da equação homogénea correspondente à dada:

$$y_h = C_1 y_1 + \dots + C_m y_m$$

obtém-se uma solução particular da completa:

$$y_{n} = C_{1}(x)y_{1} + \dots + C_{m}(x)y_{m}$$

sendo a correspondente solução geral:

$$y = y_h + y_p$$
.

Note-se que na aplicação deste método se admitiu $a_0=1$. Se assim não for, bastará dividir ambos os membros da equação (completa) dada por $a_0 \neq 0$.

Este método, embora de modo pouco frequente, é por vezes tratado ao nível dos cursos de licenciatura. De todo o modo, e pelo que acaba de mostrar-se, não comporta qualquer dificuldade digna de registo.

Muitíssimo mais raro é o seu tratamento no âmbito do estudo das equações às diferenças ordinárias, mormente ao nível dos cursos de licenciatura.

Designa-se por equação às diferenças ordinária, linear, de ordem $m \in \mathbf{N}_1$, toda a expressão que possa reduzir-se à forma:

$$a_{n,0}y_{n+m} + a_{n,1}y_{n+m-1} + \dots + a_{n,m-1}y_{n+1} + a_{n,m}y_n = f(n)$$

onde $a_{n,j}$, $j=0,\ldots,m$, são termos gerais de sucessões de ${\bf N}_0$ em ${\bf R}$ e f(n) é uma função real de variável natural.

À semelhança do que se viu com as equações diferenciais, a incógnita da equação é y_n , que é, claro está, o termo geral de uma sucessão de termos reais.

No caso de f(n) ser identicamente nula, a equação às diferenças diz-se homogénea, tendo-se, aqui também, que a solução geral da equação completa - $f(n) \neq 0$ - se obtém pela adição da solução geral da equação homogénea correspondente com uma solução particular da equação completa:

$$y_n = y_{n,h} + y_{n,p}.$$

No caso mais simples de uma equação homogénea, a sua solução geral é do tipo:

$$y_{n,h} = C_1 y_{n,1} + \dots + C_m y_{n,m}$$

onde $y_{n,j}$, $n \in \mathbf{N}_0$, j=1,...,m, são sucessões de termos em \mathbf{R} , e em que $C_j \in \mathbf{R}$, são constantes arbitrárias.

À semelhança do que se viu com as equações diferenciais, uma solução particular da equação completa pode conseguir-se facilmente por recurso ao método dos coeficientes indeterminados, desde que f(n) apresente certo tipo de estrutura.

Este tipo de situações é tratado com grande frequência ao nível dos cursos de licenciatura, mas o mesmo se não dá com o método de variação das constantes, de grande utilidade na generalidade dos casos de f(n).

Neste método admite-se que uma solução particular da equação completa é do tipo:

$$y_{n,p} = C_1(n)y_{n,1} + \dots + C_m(n)y_{n,m}$$

que se obtém da solução geral da equação homogénea correspondente à dada, mas em que se admite que $C_j(n)$, $j=1,\ldots,m$, já não são constantes reais arbitrárias, mas funções da variável natural, n.

Ora, o recurso ao método de variação das constantes conduz, no caso de uma equação às diferenças completa de ordem m, ao seguinte sistema de quações lineares:

$$\begin{cases} \Delta C_1(n) y_{n+1,1} & + & \dots & + & \Delta C_m(n) y_{n+1,m} & = & 0 \\ \\ \Delta C_1(n) y_{n+2,1} & + & \dots & + & \Delta C_m(n) y_{n+2,m} & = & 0 \\ \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \\ \Delta C_1(n) y_{n+m-1,1} & + & \dots & + & \Delta C_m(n) y_{n+m-1,m} & = & 0 \\ \\ \Delta C_1(n) y_{n+m,1} & + & \dots & + & \Delta C_m(n) y_{n+m,m} & = & f(n) \end{cases}$$

ou, escrito na forma matricial:

$$\begin{bmatrix} y_{n+1,1} & y_{n+1,2} & \dots & y_{n+1,m} \\ y_{n+2,1} & y_{n+2,2} & \dots & y_{n+2,m} \\ \dots & \dots & \dots & \dots \\ y_{n+m-1,1} & y_{n+m-1,2} & \dots & y_{n+m-1,m} \\ y_{n+m,1} & y_{n+m,2} & \dots & y_{n+m,m} \end{bmatrix} \times \begin{bmatrix} \Delta C_1(n) \\ \Delta C_2(n) \\ \dots \\ \Delta C_{m-1}(n) \\ \Delta C_m(n) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ f(n) \end{bmatrix}$$

onde as incógnitas são $\Delta C_i(n)$, $j=1,\ldots,m$, ou seja, as primeiras diferenças de $C_i(n)$.

Dado que a anterior matriz é a matriz de Casorati, K(n+1), - $y_{n,j}$, $j=1,\ldots,m$, constitui um conjunto fundamental de soluções -, o seu determinante, $\left|K(n+1)\right|$, - determinante casoratiano - não é nulo.

A solução do anterior sistema, ainda na forma matricial, é, pois:

$$\begin{bmatrix} \Delta C_1(n) \\ \Delta C_2(n) \\ \dots \\ \Delta C_{m-1}(n) \\ \Delta C_m(n) \end{bmatrix} = K^{-1}(n+1) \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ f(n) \end{bmatrix}$$

onde $K^{-1}(n+1)$ é a inversa da matriz de Casorati.

Designando por $M_{pq}\,(n+1)$ o elemento da linha p e da coluna q da matriz adjunta de K(n+1) , virá então:

$$\Delta C_p(n) = \frac{M_{pq}(n+1)}{|K(n+1)|} \cdot f(n)$$

 $\operatorname{com} p, q \in \{1, \dots, m\}.$

As relações assim encontradas são, como é evidente, as primeiras diferenças de $C_n(n)$, $p=1,\ldots,m$, sendo que são os $C_n(n)$ que se pretende determinar.

Tal desiderato pode conseguir-se, ao menos, por duas metodologias: a primeira, através da utilização do operador antidiferença, Δ^{-1} ; a segunda, à custa de relegar o problema em causa para o formato de novas equações de diferenças de primeira ordem. Expõe-se aqui apenas a primeira metodologia, sendo essencial que se conheça o conceito de antidiferença.

Assim, se for:

$$\Delta y_n = x_n$$

a antidiferença de $x_{\scriptscriptstyle n}$ é $\ y_{\scriptscriptstyle n}+C$, onde C é uma constante real arbitrária, ou seja:

$$\Delta^{-1}x_n = y_n + C \qquad \land \qquad C \in \mathbf{R}.$$

Note-se que, à semelhança do operador diferença, Δ , também a antidiferença, Δ^{-1} , é um operador linear, tendo-se $\Delta\Delta^{-1}=I$, embora, em geral, $\Delta^{-1}\Delta\neq I$. Em Luís (2006), pode encontrar-se um quadro com uma diversidade muito útil de expressões de f(n), com as correspondentes (primeira) diferença e antidiferença.

Nestes termos, o recurso ao operador antidiferença fornece:

$$C_{p}(n) = \Delta^{-1} \left\lceil \frac{M_{pq}(n+1)}{\left| K(n+1) \right|} \cdot f(n) \right\rceil + A_{p}$$

com $p=1,\ldots,m$, $A_p\in\mathbf{R}$ constantes arbitrárias, e sendo $C_p(n_0)=C_p$. Um exemplo simples ilustra o método acabado de expor.

Seja, então, a equação às diferenças de segunda ordem:

$$y_{n+2} + 8y_{n+1} + 7y_n = e^n$$

que é uma equação completa, com $f(n) = e^n$.

A solução geral da correspondente equação homogénea:

$$y_{n+2} + 8y_{n+1} + 7y_n = 0$$

determina-se de modo elementar e vale:

$$y_{nh} = C_1(-1)^n + C_2(-7)^n$$

 ${\rm com}\,C_1,C_2\,{\rm constantes}$ reais arbitrárias. Assim, uma solução particular da equação completa obter-se-á por:

$$y_{n,n} = C_1(n)(-1)^n + C_2(n)(-7)^n$$

onde $\,C_1(n)\,$ e $\,C_2(n)\,$ são agora funções da variável natural, n , que têm de ser determinadas.

Tal objetivo, como se viu atrás, consegue-se resolvendo o sistema de equações lineares:

$$\begin{cases} \Delta C_1(n)(-1)^{n+1} + \Delta C_2(n)(-7)^{n+1} = 0 \\ \Delta C_1(n)(-1)^{n+2} + \Delta C_2(n)(-7)^{n+2} = e^n \end{cases}$$

em ordem às diferenças, $\Delta C_1(n)$ e $\Delta C_2(n)$, e valem:

$$\Delta C_1(n) = -\frac{(-e)^n}{6} \qquad \wedge \qquad \Delta C_2(n) = \frac{1}{42} \left(-\frac{e}{7}\right)^n.$$

Aplicando agora a estas expressões o operador antidiferença, virão as expressões de $C_1(n)$ e $C_2(n)$:

$$C_1(n) = \frac{(-e)^n - 1}{6(e+1)} + A_1$$
 \wedge $C_2(n) = -\frac{1}{6(e+7)} \left[\left(-\frac{e}{7} \right)^n - 1 \right] + A_2$

com A_1 , $A_2 \in \mathbf{R}$ constantes arbitrárias.

Introduzindo, finalmente, $C_1(n)$ e $\ C_2(n)$ na solução geral da equação homogénea, obterse-á uma solução particular da equação completa inicial:

$$y_{n,p} = \frac{e^n}{(e+1)(e+7)} + \frac{(-1)^{n+1}}{6(e+1)} + \frac{(-7)^n}{6(e+7)}$$

Assim, a solução geral da equação completa inicialmente colocada é:

$$y_n = y_{n,h} + y_{n,p} = \underbrace{C_1(-1)^n + C_2(-7)^n}_{y_{n,h}} + \underbrace{\frac{e^n}{(e+1)(e+7)} + \frac{(-1)^{n+1}}{6(e+1)} + \frac{(-7)^n}{6(e+7)}}_{y}.$$

Finalmente, importa chamar a atenção para o facto do método de variação das constantes se aplicar também ao caso de equações com coeficientes variáveis, bem como ao de sistemas de equações, sejam diferenciais ou às diferenças.

BIBLIOGRAFIA

Costa, Mário Rui Nunes da, 1995, Equações de Diferenças Finitas, FEUP.

FERREIRA, Manuel Alberto e Rui Menezes, 1992, EQUAÇÕES COM DIFERENÇAS. Aplicações em problemas de Finanças, Economia, Sociologia e Antropologia, Edições Sílabo, Lda.

Luís, Rafael Domingos Garanito, 2006, *Equações de diferenças e aplicações*, Universidade da Madeira, Departamento de Matemática e Engenharias.

SARAIVA, Maria dos Anjos, 1982, *EQUAÇÕES ÀS DIFERENÇAS FINITAS. Aplicações à Economia*, Comunicações 4, Universidade de Coimbra, Faculdade de Economia.

VELASCO, Valentim, 1998, EQUAÇÕES FUNCIONAIS DISCRETAS, SPB Editores, Lda.

VILLATE, Jaime E., 2009, Equações Diferenciais e Equações de Diferenças, FEUP.